What our lab does:

- We grow **ultra-wide band gap semiconductors** for use in optoelectronic and electronic devices.
- We develop **new equipment technologies** to access new synthesis capabilities for both bulk and thin film growth.

How we do this:

- We use a variety of techniques to grow nitrides, including the **ammonothermal method** and novel **flux-based approaches**.
- We grow thin films using traditional and a novel **high pressure MOCVD system**.

Why we are investigating this area:

- The **sustainable electrification** of the USA demands efficient electric power conversion. Materials we are developing will eliminate waste heat production and enhance performance.
- **Disinfection of water and surfaces** is critical to our health. High power UV emitters offer a solution but require better materials and synthesis approaches for widespread use.

Activities:

Synthesis

Equipment

Modeling/Theory

Demonstrative Devices

Single Crystal Ammonothermal GaN

\[T_{\text{melt}} = 4000 \, ^\circ\text{C} \]

\[P_{\text{melt}} = 12 \, \text{GPa} \]

High Pressure MOCVD Tool Development

10.1016/j.jcrysgro.2021.126155