I-FMD Grand Rounds

You are here

I-FMD's Material and Devices
Grand Rounds

Fridays at 12 pm
Zoom Link: https://lehigh.zoom.us/j/97958879534


Fall 2020 Schedule

Friday, September 25
Synectics: From Reaction Bonding to Single Crystals
Helen Chan, Materials Science & Engineering

New research directions often evolve from transferring concepts from one area of research to another.  This talk will draw on examples of this from my own research experience.  The underlying theme will be novel processing, and how different reaction/processing routes can be modelled and exploited to achieve desirable microstructures and properties.  Topics to be considered include reaction bonding in alumina ceramics, patterning of sapphire substrates for III-nitride growth, and single crystal growth by reaction synthesis. 

Professor Helen Chan is New Jersey Zinc Professor of Materials Science and Engineering. She received her B.Sc. and Ph.D. form Imperial College, University of London.  She joined the Lehigh faculty in 1986, and subsequently took an 18-month leave of absence at the National Institute of Standards and Technology, where she investigated mechanical properties of ceramics. She returned to Lehigh in 1988, becoming Full Professor in 1995.  She served as Chair of the Department of Materials Science and Engineering 2006 - 2016.

Dr. Chan is the author of over 190 publications, 5 US patents,165 contributed talks, and over 110 invited presentations. Her work has been cited in > 7,100 publications. Her research interests include: 1) Application of reactive processing to fabricate unique ceramic/metal structures, 2) Processing, properties and advanced characterization of high entropy alloys, 3) Mechanical behavior of ceramic composites, 4) Role of interfacial chemistry in determining the elevated temperature mechanical behavior of ceramics. Dr. Chan chaired the 2008 Gordon Research Conference on Solid State Ceramics.

Dr. Chan is a Fellow and a member of the Board of Directors of the American Ceramic Society. She received its Roland B. Snow award five times.  She was also a recipient of ASM International's Bradley Stoughton Award for outstanding young faculty in the field of Materials Science & Engineering. She is also a recipient of Lehigh’s Libsch award for excellence in research, Hillman Award for “teaching, research work and advancing the interests of the university”, and the Service Teaching Excellence award on 3 separate occasions. In 2016, she was awarded a Fulbright Visiting Professorship at TU Graz, Austria. She is one of the researchers highlighted in the book “Successful Women Ceramic and Glass Scientists and Engineers: 100 Inspirational Profiles,” by L. Madsen, Wiley, 2015.

Friday, October 2
How to judge a book by its cover: applications of surface science in academia and industry
Ryan Thorpe, Research Scientist, Materials Characterization Facility

With the rise in importance of nanoscale materials for computing, energy generation, and biomedical applications, it has become crucial to control surfaces and interfaces. This talk will discuss some of the emerging methods that are used to characterize surfaces, with a particular focus on IFMD's state-of-the-art low energy ion scattering (LEIS) and near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) instruments.

Ryan is a surface scientist at IFMD, where he runs, maintains, and designs experiments for the NAP-XPS and LEIS instruments. He received his PhD in Physics from Rutgers University studying diffusion pathways in lithium ion batteries. Prior to joining Lehigh, he was a postdoc at Rutgers researching the surface termination of novel semiconductor devices.

Friday, October 9
Optical tweezers: harnessing photons to manipulate nanoparticles and biomolecules
Daniel Ou-Yang, Physics

During this IFMD Ground-Rounds talk we will first look back at how Authur Ashkin overcame the challenges during his two decades of struggles before a true single beam optical trapping was invented in 1986 – leading to his Nobel Prize in 2018. We will then explore major breakthroughs in science and technologies using Ashkin’s invention. Contributions from Lehigh students will be mentioned. We will end by asking questions on how Ashkin might have envisioned new applications of optical tweezers in the future science and technology endeavors. 

Ou-Yang grew up in Taiwan. He came to the US for graduate study and received his Ph.D. in physics from UCLA. He did postdoctoral training at the U. Penn by doing research at the Exxon Corporate Research Laboratory. He joined Lehigh University in 1988 and is now a Professor of Physics and Bioengineering and also serves as the director of the Emulsion Polymers Institute. During his academic leave Ou-Yang served visiting positions at institutes in France, Hong Kong, Taiwan and South Korea. At Lehigh Ou-Yang works in soft matter and biological physics.

Friday, October 16
Is nitrogen the new carbon? A convoluted story of production, use, and sustainability of modern fertilizers
Jonas Baltrusaitis, Chemical & Biomolecular Engineering

The world is experiencing unprecedented economic growth and increase in human population, thereby requiring more sustainable utilization of natural resources. Fertilizer production and usage is strongly correlated with food output and food security. While more than 200 million fewer people are undernourished than in 1990, 795 million people still remained undernourished in 2015. With the world population expected to grow by 35% to 9 billion by 2050, providing people around the world with nutritious supply of food at reasonable cost, is one of the greatest challenges.  Fertilizer demand hence is expected to grow to about 200.5 million metric tons of (N+P2O5+K2O) in 2018.  Urea, CO(NH2)2, has been the most prominent N fertilizer making up ~60% of global nitrogen fertilizer use.  Since the process to synthesize ammonia (NH3), a reactant used to make urea, remains energy intensive and uses up to 1 % of the global energy and ~4 % of natural gas, it is critical that the urea nitrogen applied to soils is fixated in plants and not released in the form of gaseous NH3 or otherwise lost to the environment.  Unfortunately, only about 50% of the nitrogen fertilizer applied is absorbed by the crops. Importantly, the overall production of the cropping systems indicated no benefit in terms of yield to be expected from simple increase of N fertilization in the absence of radical agronomical improvement of the cropping system.  In particular, while in grassland this N surplus is generally stored in the soil organic matter pool, in the case of cropland, most of it is leached quickly as nitrate, emitted as NH3 or denitrified as N2, and N2O as a by-product. It is important to note that the external inputs for higher crop production, such as fertilizers, pesticides and herbicides, are reliant on non-renewable fossil fuels. With increasing costs for transport and natural gas and oil, the use of these agrochemical inputs becomes increasingly expensive, especially for resource-deficient, small-scale farmers. Their energy-intensive production and shipment around the world is, in the long run, not sustainable.  Urea and NH4+ are increasingly recovered from source separated wastewater, NH4+ in the form of struvite, (NH4)2SO4 - readily used as a fertilizer - or (NH4)2CO3 which is low cost, widely used in China but has poor thermal stability and quickly decomposes under humid environment. At the forefront a variety of solutions have been proposed, farming with rocks and minerals has emerged due to the wide availability of raw materials, their low costs and minor environmental impact.  Commercial fertilizers usually provide the three macronutrients, N, P and K. Only in recent years do the fertilizer producers in some developing countries include secondary macronutrients, Ca, Mg and S and essential micronutrients, such as Zn, in their formulas.  Many of the rock and mineral fertilizer materials contain a multitude of nutrients, including micronutrients.  We posit that a paradigm shift from organophosphorus synthetic urease and nitrification inhibitors towards natural mineral derived urea and NH4+ co-crystals synthesized using green mechanochemical methods will decrease N losses into sensitive air, inland and marine water bodies while also enhancing other macronutrient (Ca, Mg, S) and micronutrient availability and solubility. This presentation will show the complexities emerging from operating the fertilizer industry via business as usual and the pathways that can lead to more sustainable developments.

Jonas Baltrusaitis graduated from University of Iowa in 2007 with PhD in physical chemistry with emphasis on sour gas reaction with mineral oxide surfaces. In 2014 he joined Lehigh University Department of Chemical and Biomolecular Engineering to work on natural gas conversion and and nutrient containing feedstock sustainable process design. He's a coauthor of more than 200 papers in environmental chemistry, photocatalysis and sustainable process design and a recent recipient of the  2020 ACS Sustainable Chemistry & Engineering Lectureship Award. 

Friday, October 23
The remarkable versatility of hydrogen as an impurity in semiconductors
Michael Stavola, Physics

The “simple” hydrogen impurity participates in a rich variety of phenomena in semiconductors and transparent conducting oxides.  H has fascinating fundamental properties and strongly impacts electronics technology.  In recent years, many of the properties of isolated H and H-containing defects in semiconductors have begun to be understood in considerable detail due to the strong, synergistic interaction between experiment and theory.  Nevertheless, H continues to provide new surprises and new puzzles that challenge us.  This talk will be a survey of the properties of H in semiconductors and its impacts on electronics technology.

Michael Stavola received his Ph.D. in Physics from the University of Rochester in 1980 and was a member of the technical staff at Bell Laboratories, Murray Hill, from 1980-1989.  Stavola then joined the faculty of Lehigh University where he is the Sherman Fairchild Professor of Physics.  He was chair of the Department of Physics (2003-2009) and an Associate Dean in the College of Arts and Sciences (2009-2012).  The focus of Stavola’s research has been on the physics of defects and impurities in semiconductors.  While Stavola’s most sustained effort has been on the hydrogen impurity in semiconductors, the common thread that extends throughout his work is the insightful use of spectroscopy to extract key experimental information.

Stavola is a Fellow of the American Physical Society and of the Institute of Physics (United Kingdom).  He received a Humboldt Research Award for Senior US Scientists for visits to the Dresden University of Technology and received Lehigh’s Libsch Award for excellence in research in 2014.

Friday, October 30-Cancelled due to a conflict with RCEAS meeting.

Friday, November 6

Atomic Masonry: Building the Nanoscopic World One Angstrom at a Time
Nicholas Strandwitz, Materials Science & Engineering


Early fantasies about nanotechnology focused on molecular machines that could build materials and devices one atom at a time.  While these visions have not yet met reality, atomic level precision in material assembly has already quietly shaped the world around us.  In this presentation, I will discuss a technique used in science and industry to assemble matter one atomic layer at a time: atomic layer deposition (ALD).  ALD consists of two or more sequential, self-limiting vapor-solid reactions that occur on a surface resulting in growth of a film. Using this technique, single atomic layers are grown on a surface and can uniformly coat even non-planar and porous architectures. This technique and its variants are already used to create transistors, where device features are on the order of 2-6 nm.  I will discuss the basics, origins, and limitations of the ALD technique as well as recent developments and selected applications, both established and emerging. 


Dr. Strandwitz joined the Lehigh University faculty in January 2013. Dr. Strandwitz completed his BS in Engineering Science at The Pennsylvania State University in 2004 during which time he worked with Prof. Joseph Rose and Prof. Stephen Fonash.  He then earned his PhD from the Materials Department at University of California Santa Barbara with Professor Galen D. Stucky. Professor Strandwitz conducted postdoctoral work at California Institute of Technology working with Professor Nathan S. Lewis.  His research interests at Lehigh include new chemistries and techniques in atomic layer deposition and interfacial electronic properties between semiconductors and atomic layer deposited metal oxides.  His research is supported by the Nation Science Foundation, Department of Energy, Pennsylvania Department of Commerce and Economic Development, and several small and large companies. Dr. Strandwitz is the recipient of the Harold Chambers Junior Professorship (2016, 2017) and the NSF CAREER Award (2018). 

Friday, November 13
Reimagining Sustainability: Why and How We Sustain What We Sustain? 
Michael Kramp, Professor of English & Director, Lehigh Humanities Lab
Amanda Greene, Andrew W. Mellon Postdoctoral, Research Associate

Engineers have approached sustainability as a technical problem that demands the production of new, efficiently implementable solutions. This has led to significant success in shaping a greener society, from renewable solar and wind, to electric cars and smart grids. To this end, Engineers have tended to approach questions of sustainability through what we might term a “business-as-usual” approach: focus on the future, design new energy systems, but not fundamentally change how we execute or imagine “sustainability” at a societal, behavioral, or communal level. Scholars in the arts and humanities are often quite good at critiquing current social conditions and imagining alternative forms of social existence. And yet, humanists and artists are, by training, relatively uninterested in constructing or making such sustainable futures. Despite their different perspectives, neither isolated discipline has clarified exactly why “sustainability” is a social good that we should value. At the heart of our community-building and ideation grant is an attempt to build upon Lehigh’s existing interdisciplinary structures to create a common vocabulary and develop a series of external grant proposals; these proposals will help us reassess how we might think about the future of sustainability: what do we want to sustain, why, and how might our methods imagine alternative kinds of technologies, communities, and modes of relationship.

Michael Kramp Bio: 
Michael Kramp is Associate Professor of English and Director of the Film and Documentary Studies Program at Lehigh University in Bethlehem, PA, U.S.A.  He is the author of Disciplining Love: Austen and the Modern Man (The Ohio State University Press, 2007) and editor of Jane Austen and Masculinity (Bucknell University Press, 2017). He has also published on such figures as Deleuze, Foucault, Pater, Dickens, and Lawrence.  He has edited and introduced special issues of Rhizomes focused on Deleuze and Photography and Austen and Deleuze, and published a series of articles on nineteenth-century visual culture, including pieces on the work of Hawarden, Lady Clementina, Henry Fox Talbot, Ella Hepworth Dixon’s The Story of a Modern Woman, and Amy Levy’s The Romance of a Shop

Amanda Greene Bio:
Amanda K. Greene is an Andrew W. Mellon Postdoctoral Research Associate at Lehigh University’s Humanities Lab –a university-wide center that curates collaborative, interdisciplinary dialogue, pedagogy, and research. Drawing on her background in English Language and Literature and Science, Technology, and Society, Greene’s research operates at the nexus of feminist technoscience, media theory, and disability studies. While it spans multiple fields across the humanities and social sciences her scholarship is bound together by a driving concern about how everyday habits of visual media readership shape human bodies and embodied practices of sense-making. She has been recently published in venues such as Feminist Theory, Perspectives in Biology and Medicine, Information, Communication, Society, and Twentieth Century Literature.


Fall Break-Spring 2021 schedule to be posted.

Spring 2020 Schedule
*Click on title for additional information and video. Log in is required.

Thursday, June 4
Viral Adhesion and Invasion: What We Learned from Ebola and COVID-19
Frank Zhang, Bioengineering/Mechanical Engineering and Mechanics

Thursday, June 11
Dislocations at Soft Interfaces
Anand Jagota, Bioengineering/Chemical and Biomolecular Engineering

Thursday, June 18
Rare Earth Ions in Semiconductors: From Solid State Lighting to Quantum Communications
Volkmar Dierolf, Physics

Thursday, June 25
The Architectured Glass
Himanshu Jain, Materials Science

Thursday, June 25
The Architectured Glass
Himanshu Jain, Materials Science

Thursday, July 9
Charge-regulation during bacterial adhesion: Can we design of surfaces to manipulate bioenergetics, chemical bioavailability, and surface sensing?
Derick Brown, Civil & Environmental Engineering

Thursday, July 16
A story of excitons in molecular crystals: open questions about fission, fusion, entanglement, and transport in rubrene
Ivan Biaggio, Physics

Thursday, July 23
Molehills to mountains: using diffusion kinetics to measure the thermal histories of rocks
Peter Zeitler, Earth and Environmental Sciences 

Thursday, July 30
Harnessing the Donnan membrane Principle in Developing Smart Materials and Processes in Water Space
Arup SenGupta, Chemical & Biomolecular Engineering / Civil & Environmental Engineering

For more information, please contact Nikki Rump.

*Grand Rounds is a term borrowed from the medical education community to share the latest, unique advancements across all specialties. The lectures will be at the “Scientific American” level and will be suitable for all STEM audience.

*All Graduate students and post docs who join the call will be entered into a raffle for $100 gift card!

*Lectures are open to the public and will be recorded.